Upcoming R courses
Start using R and learn how to handle the statistical methods you need to work independently with your own analyses.
For you to be able to work freely in R, there are som things you need to know regardless of the intended application of the software. The basic skills required are program management, data management as well as the ability to describe data with tables and graphs.
It is also necessary to have a basic understanding of statistics in order to run accurate analyses in R. Therefore, we recommend all novice users to choose one of our course proposals.
Our proposals will help you get started as quickly as possible with both the software and the statistical models required to work independently in R. You will learn how to choose the right statistical analysis method, and how to interpret and validate the results.
Includes
R 1
R 2
All courses are in English
A total of four days
Price: SEK 22 500
R 1
Introduction to R
Handling data
Data visualisation
Descriptive statistics
Introduction to modern statistics
Statistical concepts
Classical statistical methods
Modern statistical methods
R 2
Linear regression & ANOVA
Linear regression
ANOVA
Advanced regression models
Generalised linear models
Survival analysis
Mixed models
Includes
R 1
R 2
R 3
All courses are in English
A total of six days
Price: SEK 31 800
R 1
Introduction to R
Handling data
Data visualisation
Descriptive statistics
Introduction to modern statistics
Statistical concepts
Classical statistical methods
Modern statistical methods
R 2
Linear regression & ANOVA
Linear regression
ANOVA
Advanced regression models
Generalised linear models
Survival analysis
Mixed models
R 3
Visualisation & data exploration
Visualisation
Dimension reduction with PCA
Cluster analysis & structural equation models
Cluster analysis
Factor analysis
SEM
Mediation analysis
To express your interest, please fill out the registration of interest form below.
Individual course days – Customize your reservation
There is a possibility to customize your reservation by adding individual course days. These can be added to our course proposals Basic and Medium as well as to our courses R 1–3. By adding individual course days to your reservation, you are able to tailor the training package completely according to your needs.
Introduction to R
Introduction to modern statistics
Linear regression & ANOVA
Advanced regression models
Visualisation & data exploration
Cluster analysis & SEM
Propensity Score Matching
Introduction to R
Handling data
Data visualisation
Descriptive statistics
Introduction to modern statistics
Statistical concepts
Classical statistical methods
Modern statistical methods
Linear regression & ANOVA
Linear regression
ANOVA
Advanced regression models
Generalised linear models
Survival analysis
Mixed models
Visualisation & data exploration
Visualisation
Dimension reduction with PCA
Cluster analysis & structural equation models
Cluster analysis
Factor analysis
SEM
Mediation analysis
Propensity Score Matching
Introduction
Identify imbalances in your data set
Matching techniques
Evaluation of the matching quality
Estimate the treatment effects
How to describe methods and results
The program R
R is a programming language whose main applications include statistical calculations, data visualization and machine learning assisted by AI. Through user-developed add-on packages, the number of methods for statistical calculations and graphical presentations has greatly expanded. The large number of extension packages containing reusable code and documentation has even augmented the core R language.
Applications
R is one of the most well-known and most commonly used programs for statistical analysis. It is today fully comparable to commercial statistical programs such as SPSS, SAS and Stata. Software development is constantly driven forward by all the user-created packages that are easy to install and have made R incredibly popular in computer science.
Interfaces
Early users preferred to use R purely text-based via the command prompt. Today, users usually prefer the plethora of applications that can be used to visually edit and run R code, such as Rcmdr and RStudio. With these and other extensions such as ggplot2, you can create graphics with as least as good quality as in any other statistics program.
Communities
A major difference for the users compared with other programs is that R is available free of charge as a free software license. This has led to local communities all over the world where users can network, share ideas, and learn new things. For you as a user, it is very positive as you can get help and answers to questions to a much greater extent. Because R is open source, you can also use program code that others have developed in your own projects without having to pay for license fees.
News about R
Start using R and learn how to handle the statistical methods you need to work independently with your own analyses.
Data and graph management with Basic statistics in SPSS
What are the benefits?